No Image

Для чего нужны свечи зажигания в автомобиле

СОДЕРЖАНИЕ
289 просмотров
21 января 2020

Свеча зажигания — устройство для воспламенения топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, накаливания, каталитические, полупроводниковые поверхностного разряда, плазменные воспламенители и др.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Воспламенение топливо-воздушной смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом цикле, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В газотурбинных двигателях свеча воспламеняет струю топлива, выходящего из топливной форсунки в момент запуска, серией мощных дуговых разрядов. После этого горение факела топлива поддерживается самостоятельно. Используются, как правило, свечи поверхностного разряда, питающиеся высокочастотным током высокого напряжения от агрегата зажигания. Свечей чаще всего две (для надёжности), каждая установлена в воспламенителе со специальной пусковой форсункой, работающей только при запуске, что защищает свечу от обгорания при работе двигателя. [1] [2]

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Содержание

История [ править | править код ]

Первая свеча зажигания в ее современном виде была разработана немецким инженером и ученым Робертом Бошем в 1902 году. Впервые свеча зажигания была использована с магнето высокого напряжения, также разработанным в мастерской компании BOSCH. Свечи зажигания BOSCH стали использоваться в двигателях внутреннего сгорания Карла Бенца, заменив используемые в то время калильные трубки с открытым пламенем. С тех пор и по настоящее время практически все свечи зажигания используют тот же принцип работы и строение, как и в 1902 году, эволюция данного узла шла преимущественно по пути усовершенствования используемых материалов (для изолятора, проводников и т.п.) и технологии изготовления (удешевления).

Устройство свечей зажигания [ править | править код ]

Свеча зажигания состоит из металлического корпуса, изолятора и центрального проводника. Современные свечи могут иметь встроенный резистор между контактным выводом и центральным электродом.

Детали свечи зажигания [ править | править код ]

Контактный вывод [ править | править код ]

Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора [ править | править код ]

Рёбра изолятора затрудняют электрический пробой по его поверхности, удлиняя путь поверхностных токов (эквивалент более длинному изолятору).

Изолятор [ править | править код ]

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1 000 °C и напряжение до 60 000 В [ уточнить ] . Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители [ править | править код ]

Предназначены для предотвращения прорыва горячих газов из камеры сгорания.

Корпус («юбка») [ править | править код ]

Служит для ввёртывания свечи в резьбу головки блока цилиндров, для отвода тепла от изолятора и электродов, а также является проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод [ править | править код ]

Как правило, изготавливается из легированной никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напылением из платины и других благородных металлов. Заявленный ресурс таких автомобильных свечей до 100.000 км, применение тем выгоднее, что в некоторых V-образных двигателях, расположенных поперёк, замена свечей довольно трудоёмка.

С 1999 года на рынке появлялись свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи, снабженный специальным жаропрочным полусферическим насадком. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу и форкамера, в которой происходит первичное воспламенение смеси. Такая конструкция как будто обеспечивает большой ресурс и самоочистку электродов, которые постоянно продуваются.

Эффективность «форкамерных» свечей вызывает ожесточенные споры как среди специалистов, так и среди рядовых автомобилистов. Не остаются в стороне и автомобильные журналы, часто в пылу дискуссии путают форкамерные свечи с многочисленными "самодельными свечами", выполненных путем доработки традиционных свечей. Чаще всего незначительно дорабатывается центральный или боковой электроды. Был проведен эксперимент, который показал, что подобные изменения формы электродов (сверление отверстия, раздвоение) практически бесполезны. Нет данных о комплектации современных автомобилей такими свечами, производители подобной продукции пишут, что их свечи подходят к любому автомобилю.

Центральный электрод [ править | править код ]

Центральный электрод как правило соединяется с контактным выводом свечи через стеклогерметик с резистором, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди и хрома. Иногда на рабочую поверхность напыляют иттрий, в некоторых используют платиновые напайки или утонченный электрод из иридия. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор [ править | править код ]

Зазор — минимальное расстояние между центральным и боковым электродом.

Величина зазора — это компромисс между «мощностью» искры, то есть размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяемые зазором:

  1. Чем больше зазор — тем больше размеры искры, тем больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение может пробить высоковольтные провода на корпус, «бегунок» распределителя и т. д.
  2. Чем больше зазор — тем сложнее пробить его искрой. Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением U p r <displaystyle U_>. Соответствующая напряжённость электрического поля E p r = U p r h <displaystyle E_=<frac >>>, где h <displaystyle h>— расстояние между электродами, называется электрической прочностью промежутка. То есть чем больше зазор — тем бо́льшее напряжение пробоя U p r <displaystyle U_>необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса, но это не важно в данном случае. Понятное дело, что высокое напряжение U <displaystyle U>пр мы не можем поменять — оно определяется системой зажигания. А вот зазор h <displaystyle h>мы поменять можем.
  3. Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых и платиновых свечей с тонким центральным электродом).
  4. Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси. Чем она больше — тем сложнее пробить. Пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем определяется произведением относительной плотности газа δ <displaystyle delta >на расстояние h <displaystyle h>между электродами, U p r = U p r ( δ h ) <displaystyle U_=U_(delta h)>. Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20 °C, 760 мм рт. ст.).
  5. От зазора зависит соотношение между энергией, выделяемой в фазе пробоя, в дуговой фазе, и фазе тлеющего разряда. При увеличении зазора доля энергии пробоя растёт, и именно энергия, выделенная в фазе пробоя, определяет скорость сгорания. Поэтому на быстроходных двигателях зазор приходится увеличивать [3] .
Читайте также:  Киа оптима все модели

Зазор свечей не является константой, один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя. При переоборудовании автомобиля под более дешевое альтернативное топливо – сжиженный и сжатый газ (LPG, CNG), искровой зазор следует уменьшить из-за большего пробивного напряжения, чем у бензиновой смеси.

Режимы работы свечей [ править | править код ]

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на «горячие», «холодные», «средние» — в зависимости от тепловой характеристики свечи, выражаемой её калильным числом.

Калильное число свечи зажигания определяется на специальной тарировочной установке, имеющей вид эталонного одноцилиндрового двигателя определённой конструкции. В этот двигатель устанавливают соответствующую свечу зажигания и испытывают его в различных режимах, отслеживая при этом характер работы, а также температуру и давление в цилиндре.

Каждому режиму работы двигателя соответствует определённое значение температуры теплового конуса изолятора свечи. Когда эта температура поднимается выше 850…900°С, в двигателе начинает происходить так называемое калильное зажигание — самопроизвольное, без искры, воспламенение рабочей смеси при контакте с раскалённым тепловым конусом изолятора и другими частями свечи. Данный процесс обычно проявляется при работе двигателя на больших оборотах под нагрузкой. Он может приводить к оплавлению поршня и камеры сгорания, прогоранию поршней и выпускных клапанов, а также повреждению иных элементов двигателя. Для его предотвращения в двигатель устанавливаются свечи зажигания с «холодной» тепловой характеристикой, что обеспечивается хорошим отводом тепла от теплового конуса изолятора свечи. У таких свечей тепловой конус короткий и изолятор почти на всей своей длине контактирует с металлом корпуса свечи, благодаря чему тепло от него хорошо отводится и его перегрева не происходит даже в форсированных моторах с напряжённым тепловым режимом.

С другой стороны, однако, нельзя допускать и слишком малой рабочей температуры теплового конуса свечи, поскольку при её снижении ниже 400…500°С на конусе начинается накопление отложений, вследствие чего происходит поверхностная утечка тока высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора, или вообще делает его невозможным. Поэтому в менее форсированных двигателях применяются «горячие» свечи, у которых тепловой конус изолятора имеет большую длину и теплоотвод от него затруднён, благодаря чему даже при невысокой тепловой напряжённости камеры сгорания происходит нагрев свечей и их выход на рабочую температуру, обеспечивающую самоочищение от продуктов сгорания топливной смеси — нагара, сажи и т. п.

Изоляторы свечей, работающих в оптимальном режиме, всегда имеют цвет «кофе с молоком», говорящий о правильной работе двигателя. Стоит отметить, что прогрев свечей до температуры самоочищения занимает достаточно много времени и происходит лишь примерно после 10 км пробега автомобиля, в особенности по скоростной трассе, когда тепловыделение велико. При поездках на более короткие расстояния, а также работе двигателя исключительно на малых и средних оборотах, самоочищения свечей не происходит и они покрываются нагаром, требуя периодической очистки (механической или пескоструйной).

Степень нагрева элементов свечей зависит от следующих основных факторов:

  • Внутренние факторы:
  • конструкция электродов и изолятора (длинный электрод и изолятор нагреваются быстрее);
  • материал электродов и изолятора;
  • толщина материалов;
  • степень теплового контакта элементов свечи с корпусом;
  • наличие медного сердечника в центральном электроде.
  • Внешние факторы
    • степень сжатия и компрессии;
    • тип топлива (более высокооктановое обладает большей температурой сгорания);
    • стиль езды (на больших оборотах и нагрузках двигателя нагрев свечей больше);
    • состав смеси (на бедных нагрев выше) и угол опережения зажигания.
    • «Горячие» свечи — конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Так как в этих случаях меньше температура в камере сгорания.

      «Холодные» свечи — конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива, а также в двигателях с воздушным охлаждением, отличающихся повышенной тепловой напряжённостью камеры сгорания.

      «Средние» свечи — занимают промежуточное положение между горячими и холодными (самые распространенные)

      Свеча зажигания — устройство для поджига топливо-воздушной смеси в бензиновых двигателях внутреннего сгорания. Поджиг производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи.

      Свеча зажигания является решающим фактором в определении оптимальной работы и надежного функционирования бензинового двигателя. Задачей свечи зажигания является подача высокого напряжения, генерированного в катушке зажигания, к камере сгорания, и воспламенение топливно-воздушной смеси. Между тем, свеча зажигания является предметом чрезвычайных и часто изменяющихся режимов работы, таких как "прекращение и начало" дорожного движения в городе или вождение по автострадам на полном газу.

      Требования к современным свечам зажигания:
      * надежная работа при высоких напряжениях (до 40,000 вольт),
      * хорошие изоляционные свойства (при температуре в 1000 °С),
      * сопротивляемость химическим процессам в камере сгорания и агрессивным отложениям,
      * сопротивляемость тепловому удару,
      * изолятор и электроды должны обладать хорошей теплопроводностью.

      Читайте также:  Ниссан куб каталог запчастей

      Мало кто из автолюбителей придает особое значение выбору свечей зажигания. Однако свечи являются важнейшим элементом системы зажигания, ведь от устойчивости и своевременности искрообразования зависит стабильность работы всего двигателя. К основным характеристикам свечи можно отнести: калильное число, способность к самоочищению, величину искрового промежутка, число боковых электродов, срок службы, тепловую характеристику свечи и рабочую температуру свечи. Теперь обо всем этом подробно.

      Первое, на что следует обращать внимание при выборе, — это калильное число. Данный параметр является условным и показывает, при каком давлении в цилиндре двигателя возникает калильное зажигание – воспламенение смеси не от искры, а от контакта с нагретыми участками свечи. Калильное число выбранной свечи должно строго соответствовать рекомендованному для вашего двигателя. Допускается непродолжительное использование свечей с несколько большим значением калильного числа, но категорически запрещается использовать свечи с меньшим значением, так как это может привести к самым печальным последствиям, вплоть до пробоя прокладки головки блока цилиндров, прогорания поршней, клапанов и т. д.

      Способность к самоочищению

      Тоже является условной характеристикой, не поддающейся количественной оценке. В процессе работы двигателя часть продуктов сгорания топливовоздушной смеси осаждается на поверхности камеры сгорания, поршнях и на тепловом конусе свечи.

      Практически все производители говорят о том, что их свечи обладают высокой способностью к самоочищению, однако проверить правдивость подобных заявлений можно только на практике. В идеале свеча, прогревшаяся до рабочей температуры, вообще не должна покрываться нагаром, однако в реальных условиях добиться этого невозможно.

      Теперь настала пора поговорить о том, чем вреден образовавшийся нагар.

      Это расстояние между центральным и боковым электродами. Для каждого типа свечей завод-изготовитель устанавливает определенный зазор, и дальнейшая его регулировка не предусмотрена. Если же вы каким-то образом изменили его величину, то «бюджетный» вариант решения проблемы – восстановление первоначального зазора, разумный — замена свечи.

      Число боковых электродовСвечи зажигания (NGK, Denso)

      Классическая конструкция свечи предполагает один центральный электрод и один боковой. Однако некоторое время назад производители начали изготавливать двух-, трех- и даже четырехэлектродные модели. Бытует ошибочное мнение, что в процессе их работы образуются две, три и четыре искры соответственно. Это неверно. Просто искрообразование становится устойчивее, обуславливая более стабильную работу двигателя в режиме малых оборотов, улучшается процесс поджига смеси и, наконец, увеличивается срок службы самого изделия.

      Недавно в продаже появились свечи вообще без боковых электродов, роль которых выполняют дополнительные, расположенные на изоляторе. Вот при такой конструкции как раз и возникает несколько разрядов, причем не все сразу, а по очереди, образуя тем самым «гуляющую» искру. Подобные конструкции являются весьма перспективными, так как объективно обеспечивают более надежное воспламенение смеси. Однако вследствие усложнения технологии производства они имеют и более высокую цену.

      Рабочая температура свечи

      Это температура рабочей части свечи при данном режиме двигателя. На всех режимах работы мотора она должна лежать в пределах от 500 до 900 градусов Цельсия. Как бы не различались тепловые потоки, бушующие в камере сгорания при пуске, работе на холостом ходу и режиме полной мощности, температура свечи не должна выходить из указанного поля допуска. Так как понижение температуры приведет к образованию нагара на изоляторе, способного шунтировать («закоротить») межэлектродный зазор и вызвать перебои в искрообразовании. А при повышении возникнет калильное зажигание.

      Этот неуправляемый процесс способен полностью нарушить строго согласованный рабочий цикл двигателя и резко снизить его мощность. Помимо этого повышение средней температуры электродов сокращает срок службы самой свечи.

      Тепловая характеристика свечи

      Это зависимость температуры теплового конуса изолятора и центрального электрода (рабочей температуры свечи) от режима работы двигателя. Для увеличения рабочей температуры теплового конуса увеличивают его длину, однако выше 900 градусов разогревать конус нельзя, так как при этом возникает калильное зажигание.

      Исходя из тепловой характеристики все свечи можно условно поделить на «горячие» и «холодные».

      «Горячие» свечи предназначены для применения на двигателях, где необходимо достижение температуры самоочищения от нагара при относительно небольших тепловых нагрузках. Свечи, «горячее» положенных для данного двигателя, будут вызывать калильное зажигание.

      «Холодные» свечи используются когда предусмотрен нагрев меньше температуры калильного зажигания при максимальной мощности двигателя. Свечи «холодные» для данного двигателя не будут достигать температуры самоочищения от нагара и перестанут работать через короткий промежуток времени.

      Технологии «двойного металла»Свечи зажигания

      Казалось бы, что еще нового можно привнести в конструкцию свечи? Оказывается – очень многое. На самом деле свеча имеет гораздо более сложное «внутреннее строение», чем принято считать.

      В настоящее время многими производителями освоено производство свечей с составными, биметаллическими центральными электродами. По внешнему виду они ничем не отличаются от обычных – центральный электрод вроде бы также выполнен из хромоникелевого сплава. Но внутри — медь, теплопроводность которой заметно выше. Это позволяет улучшить процесс самоочистки от нагара и повысить защиту от перегрева. Диапазон рабочих температур у них значительно расширен, поэтому они получили название «термоэластик».

      «Термоэластичные» свечи способны достигать нижнего температурного предела тепловой характеристики при наименьшей эффективной мощности, развиваемой двигателем.

      Кроме того, применение биметаллических электродов снижает термонагруженность свечи, благодаря чему значительно увеличивается срок службы. Кстати, биметаллическим может быть не только центральный, но и боковой электрод, что еще больше расширяет температурный диапазон работы свечи.

      Появление особо форсированных моторов с турбонаддувом заставило искать материалы с более высокой эрозионной стойкостью, чем хромоникелевые сплавы. В результате появились свечи с центральным электродом из платиновых или иридиевых сплавов. По температурным характеристикам такие модели не имеют преимуществ перед обычными, вот только служить они будут как минимум в 2 раза дольше биметаллических, а цена их в 2—3 раза выше.

      Чего ждать от нагара?Свечи зажигания, нагар

      По образующемуся нагару происходит утечка энергии на корпус, значительно ослабляющая мощность электрической дуги между центральным и боковым электродами свечи (т.е. искру). Может случиться, что нагар полностью заполнит пространство между электродами, образуя электропроводный мостик, что полностью выведет свечу из строя. В большинстве случаев количество отложений, достаточное для потери свечей работоспособности, возникает при неисправности системы питания и неверно выставленном угле опережения зажигания. Если вы обнаружили, что свечи серьезно «закоптились», не пытайтесь отмачивать их в бензине или ацетоне с тем, чтобы затем очистить щеткой. Дело в том, что на поверхности электродов большинства современных свечей производится напыление благородных металлов. Таким образом, проводя вышеуказанные процедуры, вы буквально обдерете свечу, как липку, что только ухудшит ее характеристики. Кроме того, вы рискуете изменить величину искрового промежутка, чем окончательно нарушите ее работу.

      Если уж по каким-то причинам нет возможности приобрести новый комплект свечей (что является самым разумным решением), то просто на время немного прикрутите винт токсичности (совет подходит только для карбюраторных двигателей) в сторону обеднения смеси. После пробега 50—100 километров нагар самоликвидируется, если только причина его возникновения не кроется в нарушении нормальной работы какой-либо из систем двигателя.

      Читайте также:  Дизельный мотор на газель

      О цвете и запахе

      Срок службы правильно подобранной свечи во многом зависит не только от ее конструкции, но и от исправности систем питания, зажигания, а также деталей самого двигателя.

      Ну а сами свечи зажигания вполне можно отнести к уникальным деталям, по внешнему виду которых можно судить о неисправностях тех или иных систем силового агрегата. Итак, переходим непосредственно к цветам отложений.

      Светло-серый или светло-коричневый может быть вызван наличием небольшого количества отложений продуктов сгорания, заметных также на боковых поверхностях электродов. Эрозия практически отсутствует. Значит, двигатель и все его системы работают нормально, и в топливном баке у вас залит качественный бензин.

      Черный свидетельствует о том, что на каких-то режимах двигателя система питания переобогащает топливовоздушную смесь. Она не сгорает полностью и образует большое количество копоти.

      При загрязнении топливом изолятор и электроды свечи покрыты влажными отложениями черного цвета, а свеча пахнет бензином. Кроме того, причиной подобного явления может стать нестабильная работа системы зажигания, приводящая к сбоям искрообразования, а также использование чрезмерно «холодной» свечи.

      Если электроды и изолятор свечи покрыты шлаком, имеющим маслянистый блеск, то можно сделать вывод о загрязнении свечи маслом. При длительной эксплуатации такой свечи, и не устраняя причину, можно получить полностью закоксованые продуктами сгорания масла изолятор и электрод. К этому приводит попадание масла в камеру сгорания, которое может быть вызвано износом маслосъемных колпачков, направляющих втулок клапанов, маслосъемных поршневых колец.

      Иные, не так часто встречающиеся, но все же возможные причины — подтекание тормозной жидкости через поврежденную диафрагму вакуумного усилителя и просачивание во впускной коллектор трансмиссионной жидкости через мембрану вакуум-корректора (для машин с автоматической КПП). Чтобы уточнить причину, необходимы дополнительные диагностические методы. Возможна такая картина и на первых километрах пробега при обкатке нового двигателя или после ремонта, когда кольца еще не приработались.

      Если в бак вашего автомобиля регулярно попадает этилированный бензин, то неизбежно отложение свинца на поверхности изолятора и электродов. Их поверхность покрывается пористыми отложениями, обладающими резким запахом сероводорода. Цвет этих отложений зависит от видов применяемых в бензине присадок и может изменяться от грязно-белого до темно-коричневого. Как показывает практика, срок службы свечей при использовании этилированного бензина сокращается как минимум вдвое.

      Износ и остекленение

      В ряде случаев происходит износ свечи. Изолятор имеет нормальный цвет, а кромки бокового и центрального электродов скруглены в результате эрозионного износа. Электродный зазор недопустимо увеличен. Такая свеча гарантирует проблемы при запуске двигателя, особенно в холодное время года, и увеличение расходов на топливо. Причина одна — несвоевременная проверка и замена свечей. Выгоревшие или сильно корродированные электроды, выгоревший «изъязвленный» изолятор — симптомы перегрева свечи. Причина — слишком низкое калильное число, неправильная установка зажигания, низкооктановый бензин. Менее вероятны, но возможны и другие причины — слишком бедная смесь, зависание клапана, плохое охлаждение и перегрев двигателя. Результат в любом случае один — калильное зажигание и сильная детонация. Если вы эксплуатируете автомобиль преимущественно в тяжелых условиях, поставьте более «холодные» свечи.

      Если вы часто допускаете перегазовки и «кик-дауны», то у вас есть все шансы узнать, что такое остекленение свечи. Поверхность изолятора приобретает желтоватый цвет с глянцевым блеском. Образование глазури происходит из-за быстрого повышения температуры в камере сгорания в момент резкого нажатия на педаль газа. При разогреве находящиеся на поверхности изолятора отложения плавятся, образуя электропроводное стекловидное покрытие. В результате возникают сбои искрообразования, особенно на высоких оборотах двигателя. В большинстве случаев восстановлению такие свечи не подлежат.

      Причины калильного зажигания и детонации

      При перегреве электродов и изолятора возникает калильное зажигание. Следствием перегрева является оплавление электродов. Как правило, причиной перегрева служит неверный выбор типа свечи (более горячей, чем требуется). Если же свеча выбрана правильно, то следует искать неисправность в системе питания. Возможно, смесь переобеднена по причине нарушения регулировок карбюратора или неисправности одного из датчиков (на двигателях с впрыском топлива), как правило — ДМРВ. Также необходимо убедиться в отсутствии подсоса постороннего воздуха во впускной коллектор и проверить регулировку клапанов, так как неверно установленный угол опережения зажигания тоже может служить причиной перегрева свечей.

      При использовании низкооктанового бензина, а также при нарушении регулировки зазора между электродами и слишком раннего зажигания может возникать детонация. Как следствие трескается или даже выкрашивается тепловой конус свечи. Гораздо большую опасность детонация имеет для поршневой группы и может послужить причиной прогорания поршней. Определить наличие детонации можно по повышенной вибрации двигателя и регулярному «постреливанию» из выхлопной трубы на холостом ходу (не путать с «вытраиванием» двигателя).

      Чуть-чуть о ресурсе

      Современные свечи зажигания при эксплуатации на полностью исправных и отрегулированных двигателях должны в соответствии с ОСТ 37. 003 081 бесперебойно работать в течение 30 тыс. км пробега для классической и 20 тыс. км для электронной системы зажигания. По мнению специалистов, фактический ресурс примерно вдвое выше, но труднодостижим из-за необходимости идеальных условий эксплуатации свечей, которые возможны не всегда. Однако с учетом прогресса в области новых технологий ресурс современных свечей, при условии исправности всех систем двигателя, составляет в среднем 50 тыс. км.

      Безусловно, выбирая свечи, необходимо руководствоваться не только требуемыми характеристиками, но и здравым смыслом. Ведь если вы являетесь владельцем ВАЗовской «классики», двигатель которой является архаизмом во всех отношениях, то ставить свечи по $10—20 за штуку по меньшей мере неразумно. И наоборот, трудно представить себе владельца Lexus, покупающего дешевые свечи с ресурсом не более 20 тыс. км.

      Если двигатель с трудом запускается, работает с перебоями, в первую очередь следует проверить исправность свечей зажигания.

      Свеча зажигания сохраняет работоспособность при не изношенных электродах, герметичном корпусе, неповрежденных тепловом конусе и изоляторе, а также исправном добавочном резисторе (если он присутствует в конструкции данного узла).

      Существует несколько способов определения работоспособности свечей зажигания: испытания «на искру», внешний осмотр, проверка электроцепи. Первый способ наиболее полно осуществим в условиях СТО (с применением спецоборудования). Автовладельцы могут провести самостоятельную проверку «на искру» только упрощенным способом.

      Проверить искрообразование свечей можно с помощью диагностического тестера, стенда с барокамерой или пьезоэлектрического пробника-«пистолета».

      В бензиновых двигателях внутреннего сгорания используются искровые свечи. Воспламенение топливо-воздушной смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом цикле, в определённый момент работы двигателя.

      В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

      В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

      Комментировать
      289 просмотров
      Комментариев нет, будьте первым кто его оставит

      Это интересно
      No Image Автомобили
      0 комментариев
      No Image Автомобили
      0 комментариев
      No Image Автомобили
      0 комментариев
      Adblock
      detector