No Image

Греется трансформатор на зарядном устройстве

СОДЕРЖАНИЕ
3 332 просмотров
21 января 2020

Безусловно, любое зарядное устройство в процессе своей работы хоть немного, но обязательно должно разогреваться, здесь достаточно вспомнить закон Джоуля-Ленца, указывающий нам на то, что если ток течет по проводнику, то будет наблюдаться и нагрев этого проводника, если конечно речь идет о реальном проводнике, например о том же медном, или о полупроводнике, из которого сделаны диоды и транзисторы.

Даже самые обычные провода, так или иначе от тока чуть-чуть всегда разогреваются. Но некоторые зарядные устройства, бывает, греются сверх всякой меры. Давайте попробуем разобраться, почему так происходит.

В случае с нынешними зарядными устройствами, причина их нагрева или перегрева заключается не только в джоулевым тепле. Любой современный сетевой зарядник — это прежде всего понижающий импульсный преобразователь. А в понижающем импульсном преобразователе есть, во-первых, импульсный трансформатор на феррите или хотя бы ферритовый дроссель.

Железные трансформаторы в зарядниках сегодня, пожалуй, не встретишь. Во-вторых, в импульсных преобразователях есть полевые транзисторы и, в-третьих, выпрямительные диоды. Таким образом, здесь есть целых три источника разогрева.

Ферритовый сердечник

На входе типичного зарядного устройства стоит диодный мост, превращающий сетевое переменное напряжение в постоянное. Это постоянное напряжение величиной около 300-310 вольт подается при помощи полевых или биполярных транзисторов короткими импульсами на импульсный трансформатор или на дроссель (в зависимости от схемотехники зарядника), который содержит ферритовый сердечник.

Итак, импульсы частотой в несколько десятков килогерц подаются на этот индуктивный элемент. Сердечник индуктивного элемента — реальный, значит когда он намагничивается и размагничивается, вихревые токи в нем так или иначе возникают, не говоря уже о насыщении. Так вот, в процессе работы зарядника этот ферритовый сердечник разогревается.

А если разработчик зарядного устройства пытался сделать его как можно компактнее, то и сердечник наверняка подобрал и установил минимально возможного для данной мощности размера, при этом частоту преобразователя завысил. В итоге сердечник, конечно, перегревается.

Если, к примеру, нормальная частота для сердечника составляет 50 кГц, а на него подали все 250 кГц. Размер то получился меньше, однако тепла взамен будет выделятся больше, ведь ферриты, способные перемагничиваться на высокой частоте без перегрева, стоят дороже, и размер, опять же, получится больше, что не выгодно для маркетинга.

Транзистор

Транзистор (полевой или биполярный) преобразуют выпрямленное сетевое напряжение в высокочастотные импульсы, которые подаются на обмотку индуктивного элемента. Так устроено большинство зарядных устройств. В редких случаях транзисторов может быть два. Если зарядное устройство относительно мощное, то транзистору необходим радиатор для отвода тепла, ведь транзистор как раз по закону Джоуля-Ленца разогревается.

Если изготовитель блока питания решил сэкономить на размере радиатора, либо совсем не поставил его, или вообще установил дешевые транзисторы с большим сопротивлением канала, то устройство, конечно, будет перегреваться. В неоригинальных зарядных устройствах такое сплошь и рядом встречается.

Выпрямительные диоды

Выпрямительные диоды Шоттки, преобразующие пониженное импульсное напряжение в постоянное низкое для зарядки, стоят на выходе, и тоже нагреваются. Они имеют падение напряжения от 0,2 (в лучшем случае) до 0,5 вольт, и при выходном токе, скажем, в 1 ампер, некоторое ощутимое количество тепла уже будет выделяться лишь на этих диодах. А если ток на выходе больше, да если напряжение меньше, это сильно сказывается на КПД.

Читайте также:  Трубка слива масла с ткр камаз

Вывод

Таким образом, если вы хотите чтобы ваш зарядник грелся как можно меньше и не перегревался, покупайте оригинальные (от фирмы – изготовителя заряжаемого устройства) зарядники, в которых установлены качественные комплектующие, где разработчик не пытался сэкономить на всем подряд, а делал упор на качество своего продукта.

1)трансформатора первичка как 220 так и 237 как лутше,

-лучше на 237в, напряжение в сети не всегда 220в, так что будет лучше и спокойнее при 237в, да и гудеть будет потише.

2)можно ли мотать вторичку тем-же проводом в несколько жил?

-конечно можно, главное чтобы суммарная площадь поперечного сечения всех использованых проводов, составляла не менее 1.7мм2, больше- лучше, но без фанатизма 2мм2 хватит с запасом.

3)сколько витков мотать на каждую катушку?

-берёте обмотку с напряжением 6.4в, сматываете её, при этом считаете витки, делите количество витков на 6.4, получаете количество витков на 1в. Исходя из этого мотаете уже свою вторичную обмотку с напряжением 18-20в.

Заряжать буду автомобильный аккумулятор 75а/ч.

– я за Вас очень рад, у меня зарядное устройство прекрасно заряжет начиная от пальчиковых (АА) аккумуляторов и заканчивая 125а/ч *12в, при этом зарядный ток выставляю 10а, что характерно то в таком режиме работы , тиристор греется значительно меньше чем диодный мост, объясняется это тем, что тиристор практически открыт полностью и на нём падение напряжения минимально. Но это так – к слову. Охлаждение в любом случае должно быть хорошим. Могу посоветовать использовать радиатор от центрального процессора компьтера , очень желательно от производителя AMD, так как у них площадь основания больше, а значит можно очень хорошо разместить и диодный мост (кврс3510 или ему подобный) вместе с тиристором, а вентилятор будет замечательно отводить тёплый воздух, таким образом получим достаточно компактное и очень мощное зарядное устройство.

Трансформаторы – электрические устройства, которые используются для трансформации энергии в процессе передачи по цепям. В процессе работы они нагреваются, что в принципе некритично, если избыточная температура не превышает той, на которую рассчитаны обмотки. Тем не менее, вопрос – почему и как греется трансформатор – является актуальным, ибо перегрев может свидетельствовать о неисправностях техники. Это может привести к риску пожара или отключения от электроснабжения потребителей.

Основные причины

Перегрев оценивается с точки зрения вероятности, частоты и сложности места обнаружения. Рассмотрим ситуации, которые встречаются чаще.

Короткозамкнутый виток

Механическая неисправность, проявляющаяся в следующих случаях:

  • Ошибка в обмотке. В распределительных трансформаторах присутствуют две обмотки – первичная и вторичная. Высокое напряжение (и соответственно малый ток) находится на первичной обмотке. Оттуда они путём электромагнитной индукции преобразуются в пониженное напряжение и повышенный ток во вторичной обмотке. В процессе такой трансформации обмотки неоднократно подвергаются диэлектрическим, термическим и механическим нагрузкам. В результате вероятно повреждение обмоток, которое заключается в нарушении целостности или даже в частичном выгорании;
  • Нарушение изоляции. Чаще встречается в местах изгиба или поворота обмотки на следующий виток. Возникает тогда, когда фактические значения тока и напряжения превышают максимально допустимые значения (этот предел указывается предприятием-изготовителем в сопроводительной документации). В случае разрушения изоляции (например, при ударе молнии) наблюдается пробой обмотки и короткое замыкание. Несмотря на кратковременность такого процесса, перегрев значителен.
Читайте также:  Сколько стоит макларен п1 в рублях

Регулярная проверка диэлектрического сопротивления обмоток помогает предотвратить проблему.

Недостаточная нагрузка

При недостаточной нагрузке во вторичной цепи входное напряжение не понижается. Из-за этого возможны диэлектрические утечки, приводящие к перегреву. Причина легко обнаруживается, поскольку недонагруженный трансформатор изменяет звуковой тон работы.

Перегрузка

Материал обмоток – медный провод, характеризующийся незначительными тепловыми потерями. Однако при нерегулярном техническом обслуживании отдельные части обмоток перегреваются. Если устройство периодически работает на повышенных значениях рабочих характеристик, то с течением времени наблюдается износ и ухудшение качества поверхностного слоя изоляции. Обмотки подвергаются тепловому деформированию, что вызывает ослабление или смещение обмоток. Трансформатор теряет в производительности, а температура на поверхности обмоток (при неудовлетворительном состоянии вентиляции) резко поднимается.

Причинами перегрузки могут быть также:

  • Вибрации агрегата;
  • Внезапный скачок напряжения;
  • Постепенно накапливающиеся коррозионные процессы.

Сердечники

Выход из строя сердечников связан с некачественной сборкой, поэтому редко становится причиной отказа. Сердечники ламинируются, чтобы избежать появления вихревых токов, способствующих перегреву. Качество ламинирующего слоя резко ухудшается, если его не контролировать. Перегрев начинается на поверхности, распространяясь вглубь, пока не достигает обмоток. Далее происходит перегрев масла, которое испаряется, и повреждает остальные узлы агрегата.

Вероятна также и механическая поломка сердечника, проявляющаяся при попадании внутрь воды (которая впоследствии интенсивно испаряется) и из-за естественного старения материала детали. Опасность перегрева устраняется заменой трансформаторного масла.

Заземляющие втулки

Конструктивно представляют собой изолирующие устройства, которые предотвращают попадание высокого напряжения на проводник при переходе к заземляющему узлу. Внутри трансформатора используются бумажные изоляторы, которые окружены маслом, обеспечивающим дополнительную изоляцию. Пробой на гильзе втулки происходит со временем, и вызывает перегрев.

Регулирующая автоматика и система охлаждения

Основная часть такой системы – тепловое реле, при помощи которого изменяются уровень и диапазон напряжения. В этом случае включаются/выключаются отдельные части обмоток, и возможный перегрев предотвращается. Первым признаком неисправности теплового реле считается несвоевременность отработки команд на изменение численных значений характеристик вторичной цепи. Немедленной замене подлежит исполнительная пружина реле, материал которой от длительного использования утратил упругость. Поэтому не происходит включения подачи масляного охладительного потока.

Проверке подлежат охлаждающие вентиляторы, масляные насосы и теплообменники с водяным охлаждением.

Читайте также:  Поклейка крыши в черный глянец

Как правильно предотвратить причину

Всё решается квалифицированным регламентным обслуживанием, периодичность которого устанавливается производителем. Главные пункты проверки рассматриваются далее.

Ток холостого хода

Перед подключением к нагрузке проверяется температура крышки корпуса. Она не может быть выше 65…70°C. В противном случае осматриваются витки изоляции. Сгоревшая, затемненная или поврежденная изоляция сопровождается характерным запахом горелого. Самая горячая часть трансформатора – катушка при вершине сердечника. Если изоляция повреждена или при холостом ходе наблюдается дым, то устройство необходимо срочно протестировать, после чего принять решение о ремонте или замене агрегата.

Ток холостого хода не должен превышать 2…3 % от общей мощности трансформатора.

При зарядке

Неисправность касается маломощных трансформаторов, например тех, что находятся в зарядных устройствах ноутбуков. Они преобразуют напряжение, поступающее от сети, в то, которое требуется компьютеру. При этом наблюдается перегрев вилки. Если этот перегрев значителен, и сопровождается неприятным запахом, то зарядное устройство заменяют; в противном случае неприятность вызовет последующую замену аккумулятора компьютера.

Снизить нагрев можно, если установить корпус набок или подставить снизу несколько карандашей, чтобы улучшить циркуляцию воздуха. Если зарядное устройство не используется, его отсоединяют от сетевой розетки.

Опыт короткого замыкания

Такая проверка сильно опасна, поэтому перед началом испытания необходимо убедиться, что сетевая нагрузка не превышает значения номинальной мощности. Рекомендуется не проводить опыт при предельной рабочей нагрузке на агрегат, а также на другом трансформаторе подобной модели. Вентиляторы должны работать на максимальных оборотах, а температура окружающей среды не может превышать 25 С.

Опыт непригоден, если трансформатор смонтирован в закрытом непроветриваемом помещении. Другие условия:

  • Соединения ответвлений установлены одинаково;
  • Трансформатор правильно рассчитан на гармоническую нагрузку;
  • Высокие токи в нейтрали отсутствуют.

Особенности поведения импульсного трансформатора

Разработчики импульсных трансформаторов стремятся минимизировать падение напряжения, время нарастания и искажения импульса. Это вызвано с увеличением тока намагничивания во время длительности импульса.

Питание в устройстве включается и выключается с помощью переключателя (или переключающего устройства) на рабочей частоте и длительности импульса, которые обеспечивают необходимое количество энергии на входе в блок питания. Следовательно, температура также контролируется. При исправном трансформаторе электрическая изоляция между входом и выходом гарантируется конструкцией устройства.

Чаще перегреваются трансформаторы, используемые в источниках питания с прямым преобразователем, особенно, если мощность превышает 500 кВт. Импульсные трансформаторы сигнального типа имеют дело с низкими уровнями мощности, поэтому их нагрев незначителен.

Проблем с перегревом таких устройств не будет, если контролировать следующие параметры:

  • Ток намагничивания.
  • Ток нагрузки.
  • Падение напряжения.
  • Напряжение отдачи.
  • Вторичный ток нагрузки.
  • Искажение импульса.

В каких случаях трансформатор нагревается больше всего

Суммируя вышеописанное, можно сделать вывод, что, перегрев трансформатора наблюдается в следующих случаях:

  • Эксплуатация оборудования в нештатном режиме;
  • Плохая вентиляция и/или охлаждение;
  • Неудовлетворительное состояние обмоток;
  • Сбой в работе автоматики;
  • Неправильное подключение;
  • Ненадёжное заземление.

Все эти проблемы снимаются квалифицированным регламентным обслуживанием.

Комментировать
3 332 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock
detector