No Image

Сколько мощности дает турбина

5 388 просмотров
21 января 2020

Ежедневно, огромное количество людей, которые, так или иначе, интересуются автомобильной тематикой, особенно «тюнингом», заманивают количеством Лошадиных сил. Каких результатов людям только не обещают… Теперь, почти каждый день можно услышать, увидеть или прочитать об увеличении мощности до 500, 700, 1000 л/с и даже больше. К сожалению, с каждым днем тенденция завышения мощности только увеличивается.
Неужели, таких выдающихся технических результатов на самом деле можно получить всего лишь сделав «чип-тюнинг» или установив дорогую «детальку»? К счастью, для проверки таких вещей существует математика, и многолетний опыт расчетов параметров двигателя внутреннего сгорания.

Надеюсь, эта короткая статья, поможет Вам в следующий раз проверить правдоподобность тех или иных обещаний.

К нашему счастью, и к несчастью тех, кто пытается «впарить» нам Лошадиные силы, последние, надо отметить, в своих многочисленных обзорах, хвастаясь достижениями потраченных финансов, упоминают о тех изменениях и частично настройках, которые были сделаны. Этих данных, зачастую, более чем достаточно, для нашего небольшого расследования.
Итак, как же мы можем, практически «на лету», посчитать заявленную мощность – все намного проще, чем кажется на первый взгляд.
Первый вопрос, который я сразу бы задал – о какой мощности собственно идет речь? Так как, существуют, как минимум, два показателя – мощность с колес и мощность с маховика. Не посвященный человек разницы не увидит, но на деле, из-за механических потерь в трансмиссии, мощность с маховика примерно на 30-40% выше измеренной мощности с колес.
Второй вопрос, узнать примерную мощность с маховика, мы с легкостью сможем, имея значения расхода воздуха, который по косвенным признакам можем рассчитать.
Рассмотрим на примере:
Имеем автомобиль с объемом двигателя 1.6л, давлением наддува 1.5бар. Какую примерную мощность имеет данный двигатель? По разным заявлениям мощность может доходить до 500 л/с… А что на деле?
Имеем формулу для расчета мощности с маховика:
HP=(MFR*60)/(AFR*BSCF),
где MFR – массовый расход воздуха, AFR — соотношение топливовоздушной смеси (12-15), BSCF – удельный показатель эффективности (для современных двигателей 0,5-0,6)
Единственное неизвестное в данной формуле — Массовый расход воздуха, который нужно рассчитать исходя из множества данных, в том числе объема двигателя и температуре воздуха.
Для двигателя объемом 1.6л, избытком наддува 1.5бар при 5500об/мин — MFR=26 lb/min, соответственно, подставляя это значение в формулу, расчетная мощность равняется 260 л/с. Ну ладно, скажут они, там давление и до 2бар доходит… Хорошо, скажем мы, и сделаем расчет – при 2бар избытка, MFR=30 lb/min, и соответственно мощность 300 л/с.
Как Вы могли заметить, при данных заданных условиях, в среднем, мощность с маховика можно посчитать, как HP=MFR x 10.

Соответственно, можно сделать и обратный расчет, зная например, применяемую турбину мы можем сказать, на какую максимальную мощность она рассчитана. Для турбин Garrett это значение находится в знаменателе турбокарты (lb/min). Для турбин других производителей, нужно перевести указанное значение в lb/min.
Естественно, не стоит думать, что если мы поставим турбину большего размера, на двигатель с маленьким объемом, и посмотрев значение MFR, например, при 1.5бар избытка для Garrett GT3076R = 52lb/min, то и получим мощность 520 л/с. Нет, этого не произойдет, так как сам двигатель просто не в состоянии, в силу своих геометрических параметров, «переварить» такое количество воздуха, да и турбина не раскрутиться до такой производительности. Поэтому, производитель и указывает, примерно, под объем каких двигателей подходит тот или иной турбокомпрессор.

Надо отметить, что конечно, теоретически, с объема 1.6л можно получить заветные 500л/с, но существует пара нюансов. Нужен компрессор типа GTX3076R, давление избытка порядка 2.5бар, при этом конструкция самого двигателя, должна быть рассчитана на обороты ближе к 11000об/мин, а сам компрессор, начнет производить избыток давления в 0.5бар, начиная только с 6000об/мин. Возникает резонный вопрос: для каких целей использовать такой агрегат?

Теперь, думаю, когда мы разобрались, откуда берется мощность, Вы не позволите ввести себя в заблуждение, когда в очередной раз, какой-нибудь «тюнер» начнет рассказывать о достигнутых небывалых результатах.

Турбо или атмо, кто быстрее?

С тех пор, как начали появляться первые турбины на тюнингованных автомобилях, возникает вопрос — кто быстрее, автомобили с турбонаддувом или атмосферники с большими распредвалами?

Ответ однозначен — правильно собранный турбо мотор не оставит никакого шанса самому "злому атмо".

Самый мощный атмосферный двигатель на данный момент применяется в боллидах Формула-1, с одного литра объёма двигателя снимается около 300 л/с.

Для примера: правильно собранный турбо мотор выдаёт до 900 л/с с литра объёма, при наддуве 5,5 атмосфер. Такие моторы применялись на Формуле-1 во времена турбо-эры с 1977 по 1988 г, с мотора объёмом 1,5 литра снимали от 700 до 1400 л/с .
Подобные моторы сейчас применяются в драг рейсинге класса "top fuel" в США, с мотора объёмом 8,2 литра снимается 7000 л/с.

Читайте также:  Ахтуба рыбалка дикарем куда поехать

От куда же берутся эти лошадиные силы? Ведь обычный мотор внутреннего сгорания имеет около 60 л/с с литра.

Обычный мотор рассчитан на езду в городских условиях, с крутящим моментом на низких оборотах. Такая компоновка имеет свои ограничения в максимальной мощности и скорости. Цилиндры двигателя имеют огромный потенциал для увеличения мощности без увеличения объёма двигателя.

На сколько можно повысить мощность двигателя с помощью турбины? При увеличении наддува на 1 атмосферу, мощность увеличивается примерно на 100%. То есть если двигатель имел изначально 100 л/с, то при давлении турбонаддува 3 атмосферы (3 бар), его мощность возрастёт на 300 л/с. Естественно двигатель должен быть подготовлен к такой нагрузке: резко возрастает тепловой режим работы мотора — повышается температура клапанов, поршней, масла, охлаждающей жидкости, выпускной системы. Эти элементы должны быть доработаны к условиям возросшей температуры. Возрастает нагрузка на поршни, шатуны, коленвал, блок двигателя, сцепление, трансмиссию. Эти элементы автомобиля должны быть подобраны в соответствии с возросшей мощностью.

Степень сжатия на турбо моторах должна быть уменьшена в зависимости от давления наддува. На самом деле высокая степень сжатия с использованием высокооктанового топлива даёт не такую уж большую прибавку мощности, как разница в цене на топливо. При увеличении степени сжатия на единицу — мощность возрастает примерно на 1,5%. Конечно существует топливо с высоким октановым числом — метиловый спирт. Его использование на атмосферном двигателе позволяет применять степень сжатия 1:16, но прибавка мощности с высокооктановым топливом не слишком существенна. Так что не нужно скупиться на уменьшении степени сжатия на турбо моторах, и в моторах с закисью азота. На мощных турбо моторах степень сжатия находится в пределах 7-8, в зависимости от применяемого топлива. Детонация очень разрушает мотор, так что лучше меньше, чем больше.

Широкое распространение в использовании на серийных дизельных и бензиновых двигателях получили турбины Garrett, которые производятся на 14 заводах по всему миру. Они так же активно используются в автоспорте и тюнинге. Имеются турбины Garrett не только с подшипниками скольжения (бронзовые втулки) как на ТКР, но и с шарикоподшипниками, которые имеют обозначение с буквой "R", например GT42R. Шарикоподшипники менее чувствительны к масляному голоданию, повышенным оборотам, имеют меньшее трение, и соответственно быстрее раскручиваются. Так же имеются турбины с каналом для охлаждения подшипника с помощью охлаждающей жидкости, что благоприятно сказывается на их сроке службы.

Турбокомпрессоры произведённые в России и странах СНГ имеют обозначение — ТКР, в Чехии C и K. По типоразмерам практически аналог старых турбин Garrett, но имеют крупную горячую часть, для больше объёмных двигателей. Существует несколько типов, которые отличаются размерами и производительностью, а так же КПД от 43 до 77%. Они используются на дизельных двигателях разной мощности, серийное применение на бензиновых двигателях данных турбин отсутствует.

Возможно ли применение турбин от дизеля на бензиновых двигателях?
Да возможно.

Не сгорят ли лопасти турбины, предназначенной для дизельных двигателей, на бензиновом моторе, ведь температура горения бензина выше чем солярки?
Случаев сгорания лопастей турбины от дизеля на бензиновом двигателе в практике не обнаружено. Температура выхлопных газов прежде всего отдаётся поршням, клапанам, блоку цилиндров, выпускному коллектору, и только потом — турбине.

Турбокомпрессор для тюнинга стоит выбирать по размерам турбинной и компрессорной части. Чем меньше турбинная (горячая) часть, тем раньше начнётся наддув на двигателе. Но маленькая горячая часть на определённых оборотах начнёт "затыкать" двигатель. Для серийных и городских машин это вполне приемлимо.
То же самое можно сказать о компрессорной части, чем меньше, тем раньше затыкает впуск двигателя, и выдаёт относительно небольшое давление наддува.
Но большая компрессорная часть рассчитана на высокий наддув и мощность двигателя, поэтому для городских машин не применяется. Так же большое компрессорное колесо вызывает помпаж на малообъёмных двигателях.

Широкое применение в автотюнинге имеют турбины от японских раллийных автомобилей Mitsubishi TD04, TD05 и TD06, а так же их китайские, более дешёвые аналоги. Турбокомпрессор TD04 применяется на двигателях до 250 л/с, TD05 до 370 л/с, а TD06 до 450 л/с.

▪Расход воздуха турбинами и степень повышения наддува.

На данной схеме представлен расход воздуха турбин Garrett в фунтах/мин и степень повышения давления. Расход воздуха 10 фунтов в минуту равняется примерно 100 л/с конечной мощности двигателя.
Степень повышения давления на картах (абсолютное давление), всегда на единицу больше избыточного давления, которое показывает манометр во впуске.

Каждая турбина имеет определённую производительность накачки воздуха. Максимальное давление наддува получается на оптимальных оборотах ротора, превышать которые не стоит, иначе пострадает подшипник турбины. На данной схеме показана производительность турбин ТКР.

К примеру турбина ТКР-6, которая применяется на машинах типа "Бычок", "Валдай", выдаёт максимально 130 л/с на дизельном двигателе, и 250 л/с на бензиновом.
Имеются экземпляры автомобилей ВАЗ с гибридным турбокомпрессором ТКР 6-7, мощностью свыше 300 л/с. На ТКР-6 диаметр компрессорного колеса 60 мм, а на ТКР-10 соответственно 100 мм, это видно из маркировки турбин.
ТКР рассчитаны на двигатели большого объёма, поэтому есть смысл при применении на бензиновых малообъёмных двигателях составлять гибрид, то есть брать горячую часть от более мелкой турбины, для более ранней раскрутки турбинного вала (спул).

Читайте также:  Nissan almera расход топлива

▪Клапан вестгейт (Wastegate).

Обходной клапан вестгейт служит для защиты подшипника турбины и двигателя от разрушения. Поток выхлопных газов старается раскрутить крыльчатку до бесконечности, тем самым нагнетая всё больше и больше воздуха в двигатель. Соответственно воздух увеличивает количество рабочей смеси, увеличивая поток выхлопных газов. Турбина раскручивается ещё быстрее. Получается замкнутый цикл.

Если этот цикл не остановить, турбина набирает обороты гораздо больше максимальных 100000-150000 об/мин, выдавая большое давление наддува. Если двигатель не рассчитан на такое давление, произойдёт детонация, и скорый выход из строя поршней. Так же высокие обороты турбины вызывают помпаж (Surge), это когда воздух уже идёт не в двигатель, а обратно на вход компрессора, с соответствующим звуком.

Обходной клапан бывает двух видов: встроенный и внешний. Встроенный (актуатор) крепится прямо на турбине, и имеет заслонку, которая отводит часть выхлопных газов, при достижении определённого давления, в обход турбины, в глушитель. У него ограниченные возможности, он не может отводить слишком большой поток выхлопных газов.
Внешний клапан выполняет те же функции, но крепится на выпускном коллекторе. При достиженнии заданного давления компрессора, открывается, и начинает стравливать выхлопные газы с выпускного коллектора, в обход турбины — в глушитель, не позволяя раскручиваться турбине больше положенного.

Его так же называют — байпасс, перепускной клапан (Bypass valve). Блоу-офф сбрасывает воздух на улицу (с соответствующим звуком), а байпасс обратно на вход турбины, как правило применяется с ДМРВ. В отличии от вестгейта этот клапан открывается не от давления турбокомпрессора, а от вакуума, который создаётся во впуске при закрытии дроссельной заслонки. Клапан блоу-оф ставится на впускной патрубок, между компрессором и дросселем. А вакуум берётся там же, где и на тормоза: во впускном коллекторе.

Представьте ситуацию: вы разгоняете двигатель, турбина набирает максимальные обороты, давление воздуха во впуске 2,5 атмосферы, поток воздуха на большой скорости поступает в двигатель, и… вы бросаете газ, что бы переключить скорость. Дроссельная заслонка закрывается, но турбина крутится на тех же оборотах. Упс… кажется это был пневмоудар (помпаж). Лопаткам компрессора в этот момент не позавидуешь. Как правило частый помпаж гнёт вал компрессора, лопатки, изнашивает упорный подшипник.
Вы переключили скорость, а лопатки турбины уже уменьшили своё вращение, и нужно опять их раскручивать, а это потеря времени.
Для того, что бы при закрытии дросселя, воздух нашёл себе путь, и существует клапан блоу-оф. Вакуум образуемый при закрытии дроссельной заслонки мгновенно открывает перепускной клапан, и поток воздуха безпрепятственно выходит на улицу, или на вход турбокомпрессора. Крыльчатка турбины при этом не теряет своих оборотов, и готова раскручиваться вновь, на новой передаче.

Интеркулер ( промежуточный охладитель воздуха ) является неотъемлемой частью двигателя с турбонаддувом. Он работает примерно как радиатор в автомобиле, только охлаждает не тосол, а воздух, нагретый турбиной. Турбокомпрессор имеет две части — горячую и холодную. Горячая часть раскручивается выхлопными газами, и сильно нагревается. Холодная часть закачивает атмосферный воздух в мотор, при этом тоже сильно нагревается от горячей части.
Горячий воздух сильно расширен, и в нём меньше молекул кислорода, так нужного двигателю. Поэтому воздух нужно охладить, иначе весь эффект от турбонаддува не будет иметь смысла. Чем холоднее воздух, поступающий в двигатель, тем больше его мощность.

Размер интеркулера тоже нельзя увеличивать бесконечно, чем больше интеркулер, тем больше турбопровал, то есть накачанный воздух пропадает в недрах слишком большого интеркулера при прибавке "газа". Но на мощных моторах он должен быть достаточно большим, иначе маленький интеркулер будет тормозить поток воздуха от большого турбокомпрессора. К примеру на моторе мощностью 1000 л/с входное и выходное отверстие интеркулера должно быть не менее 100 мм.
Интеркулер немного отличается по своему устройству от радиатора для тосола. В его каналах существуют дополнительные перегородки, для того чтобы воздух отдавал тепло как можно быстрее. Так же он выдерживает большое давление и температуру, и выполнен целиком из металла ( алюминия ) для большей прочности.

▪Мал золотник, да дорог.

Регулятор давления топлива (РДТ) применяется на инжекторных двигателях для поддержания постоянного давления топлива в топливной рейке, от которой питаются форсунки. Обычно давление топлива составляет 3 атмосферы, из этой цифры и расчитывается производительность форсунок у всех производителей. На новых моторах ВАЗ объёмом 1,6л (РДТ 380) давление топлива увеличено до 3,8 атм.
Но у РДТ 300 есть ещё одна полезная функция — он корректирует давление топлива, в зависимости от давления во впускном коллекторе. Для этого к регулятору подходит резиновый шланг. На атмосферных двигателях при закрытии дроссельной заслонки в коллекторе создаётся вакуум, и соответственно топливо начинает поступать в двигатель интенсивнее. Обратный эффект происходит на двигателях с турбонаддувом: во впускном коллекторе образуется большое давление наддува, и топливо из форсунок поступает в меньших количествах, чем рассчитывалось. Получается что производительность форсунок рассчитывается на атмосферное давление. Но регулятор с функцией корректировки давления топлива помогает справиться с этой задачей.

Читайте также:  Мкпп ниссан альмера n16

Рекомендуемая корректировка давления топлива — 1:1 к изменению давления воздуха.
Для справки: при увеличении давления топлива на 100%, производительность форсунок увеличивается на 50%.

На двигателях с турбонаддувом сильно возрастает тепловой режим работы двигателя. Количество сгоревшей рабочей смеси за единицу времени увеличивается пропорционально давлению наддува, соответственно тепло переходит не только в мощность двигателя, но и передаётся его частям. Сильно нагреваются поршни, цилиндры, выпускная система и турбина.

При температуре 260`С минеральные компоненты в масле могут закоксоваться, и отложиться в масляных каналах и подшипнике турбокомпрессора. Так же масло при большом нагреве становится очень жидким и теряет смазывающие свойства. Синтетическое масло менее подвержено воздействию нагрева, почти не теряет вязкость и не коксуется, поэтому предпочтительней для двигателей.

Чтобы не допустить перегрева масла, для этого служит масляный радиатор. Он подсоединяется к специальному переходнику под масляным фильтром. Большинство турбин не имеют канал для охлаждающей жидкости (тосола), и поэтому единственный способ охладить подшипник турбины — смазка холодным маслом.
Для отвода излишней температуры от турбо мотора все средства хороши, и поэтому иметь масляный радиатор желательно на каждой турбированной машине.

Способность турбонагнетателя увеличивать мощность наиболее наглядно демонстрировалась гоночными автомобилями Гран-при Формулы 1 эпохи 1977-1988 годов.

Рис. Двигатель Renault EF15B Formula 1, 1985 — 1986 г.г., V6. объем 1492 куб. см., давление наддува до 4 бар, мощность до 900 л.с.

Сравнение мощности драгстеров с мощностью болидов Формулы 1 показывает абсолютное превосходство двигателей с турбонаддувом. Реальная мощность драгстера с 8-ми литровым двигателем находится в диапазоне 5000-6000 л.с., что означает 0,62 — 0,75 л.с. с 1 куб. см. Эти цифры выглядят блекло в сравнении с 1300-1400 л.с. 1500 кубовых двигателей автомобилей Формулы 1 1981 года, что означает отдачу от 0,86 до 0,93 л.с. с одного кубического сантиметра рабочего объема. Однако у потенциального пользователя турбонаддува остается много вопросов, ответы на которые покажут, почему турбонадцув в равной степени полезен автомобильному энтузиасту, который использует автомобиль для повседневной езды, спортсмену, и даже уличному гонщику.

Почему турбонаддув дает больший прирост мощности, чем другие способы модернизации двигателя?

Потенциал повышения мощности двигателя от применения любого компрессора измеряется количеством воздуха, нагнетаемого устройством с учётом потерь мощности, затрачиваемой на привод, а так же на нагрев воздуха в процессе сжатия. Хотя может показаться, что турбонагнетатель не использует мощность двигателя, так как энергия выхлопа так или иначе будет потеряна, это далеко не так. Поток горячих выхлопных газов приводит во вращение турбину. Уменьшенные проходные сечения, свойственные ее конструкции, создают этим газам противодавление. Это вызывает некоторые потери мощности двигателя, которые не возникли бы, если бы турбонагнетатель получал энергию от другого её источника, а не от двигателя, который в нашем случае выступает в роли насоса. Потеря мощности увеличивается при уменьшении размера турбонагнетателя, потому что турбина меньшего размера создает большее противодавление. Напротив, большие турбины создают намного меньшее противодавление, и поэтому потери мощности меньше.

И всё же затраты мощности на привод нагнетателя, свойственные двигателю с турбиной, существенно меньше, чем потери, возникающие при использовании приводного компрессора с ремнем или другим механическим приводом.

То, что нагнетатель всегда нагревает сжимаемый воздух, является термодинамическим фактом, от которого мы не можем отмахнуться. Различные виды нагнетателей нагревают воздух в разной степени при одинаковых расходах газа и степенях сжатия. В значительной степени это зависит от КПД различных типов насосов. Классический компрессор типа Рутс обычно имеет КПД приблизительно 50 % при том, что турбонагнетатель имеет КПД в районе 70%. Чем выше эффективность (КПД), тем меньше нагрев воздуха. Эффективность имеет первостепенное значение для настоящих энтузиастов мощности, так как повышенная температура воздуха на впуске — враг для высоких характеристик двигателя. При высокой температуре плотность воздуха меньше, таким образом, двигатель фактически потребляет меньшее количество воздуха при более высокой температуре, даже при неизменном давлении. Второй проблемой является то, что более высокие температуры способствуют разрушительно воздействующей на двигатель детонации топливовоздушной смеси.

Комментировать
5 388 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock
detector