No Image

Ток измеряется в амперах

СОДЕРЖАНИЕ
1 149 просмотров
21 января 2020

Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток) [1] . Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

Содержание

Определение [ править | править код ]

16 ноября 2018 года на XXVI Генеральной конференции мер и весов было принято новое определение ампера, основанное на использовании численного значения элементарного электрического заряда. Формулировка, вступившая в силу 20 мая 2019 года, гласит [2] :

Ампер, символ А, есть единица электрического тока в СИ. Она определена путём фиксации численного значения элементарного заряда равным 1,602 176 634⋅10 −19 , когда он выражен единицей Кл, которая равна А·с, где секунда определена через Δ ν C s <displaystyle Delta
u _<mathrm >> [3] .

История [ править | править код ]

Происхождение [ править | править код ]

Единица измерения, принятая на 1-м Международном конгрессе электриков [4] (1881 г., Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см ).

Международный ампер [ править | править код ]

В 1893 году было принято определение единицы измерения силы тока как тока, необходимого для электрохимического осаждения 1,118 миллиграммов серебра в секунду из раствора нитрата серебра. Предполагалось, что величина единицы при этом не изменится, однако оказалось, что она изменилась на 0,015%. Эта единица стала известна как международный ампер.

Определение 1948 года [ править | править код ]

Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10 −7 ньютона .

Таким образом, фактически было возвращено изначальное определение.

Из определения ампера следует, что магнитная постоянная μ 0 <displaystyle mu _<0>> равна 4 π × 10 − 7 <displaystyle 4pi imes 10^<-7>> Гн/ м или, что то же самое, 4 π × 10 − 7 <displaystyle 4pi imes 10^<-7>> Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d <displaystyle d> друг от друга бесконечных параллельных проводников, по которым текут токи I 1 <displaystyle I_<1>> и I 2 <displaystyle I_<2>> , приходящаяся на единицу длины, выражается соотношением:

F = μ 0 4 π 2 I 1 I 2 d . <displaystyle F=<frac <mu _<0>><4pi >><frac <2I_<1>I_<2>>>.>

Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создаёт замкнутый контур, по которому протекает ток, равный 1 амперу .

Определение 2018 года [ править | править код ]

В 2018 году было принято и на следующий год вступило в силу нынешнее определение ампера. Величина ампера не изменилась при смене определения. Однако изменения определения привело к тому, что указанное выше выражение для магнитной постоянной перестало быть точным, а стало выполняться лишь численно (но с огромной точностью).

Кратные и дольные единицы [ править | править код ]

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI , англ. The SI Brochure ), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ [5] . «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок [7] .

Кратные Дольные
величина название обозначение величина название обозначение
10 1 А декаампер даА daA 10 −1 А дециампер дА dA
10 2 А гектоампер гА hA 10 −2 А сантиампер сА cA
10 3 А килоампер кА kA 10 −3 А миллиампер мА mA
10 6 А мегаампер МА MA 10 −6 А микроампер мкА µA
10 9 А гигаампер ГА GA 10 −9 А наноампер нА nA
10 12 А тераампер ТА TA 10 −12 А пикоампер пА pA
10 15 А петаампер ПА PA 10 −15 А фемтоампер фА fA
10 18 А эксаампер ЭА EA 10 −18 А аттоампер аА aA
10 21 А зеттаампер ЗА ZA 10 −21 А зептоампер зА zA
10 24 А иоттаампер ИА YA 10 −24 А иоктоампер иА yA
применять не рекомендуется

Связь с другими единицами СИ [ править | править код ]

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону [8] .

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

Читайте также:  Продажа ковриков для авто

Традиционный символ I происходит от французского словосочетания intensité du courant, что на русском языке означает «сила тока». Эта фраза часто используется в старых текстах. В современной практике её зачастую укорачивают до слова «ток». Обозначение I было впервые использовано самим Андре-Мари Ампером, в честь которого названы единица электрического тока и разработанный им закон.

Великий учёный

Имя André-Marie Ampère увековечено среди имён других 72 учёных на первом этаже Эйфелевой башни. Его вклад в науку заложил фундамент для понимания явлений электромагнетизма. Хоть Андре-Мари был не первым человеком, обнаружившим связь между электричеством и магнетизмом, он впервые попытался теоретически объяснить и продемонстрировать, как в математических выражениях расписывается связь между этими явлениями. Ампер с помощью устройства собственного изобретения смог измерить ток, а не просто зафиксировать его присутствие.

Учёный родился в Лионе в 1775 году и был современником Французской революции. Будучи сыном коммерсанта и чиновника, он с ранних лет проявлял страсть к математике, а став подростком, читал сложные трактаты Эйлера и Лагранжа. Получил должность профессора математики Парижской политехнической школы в 1809 году, а в 1814 г. был избран членом Академии наук. Хоть Андре-Мари преподавал математику, его интересы распространялись на многие области, в том числе на химию и физику.

Наиболее значимый документ Ампера по теории электричества был опубликован в 1826 году. Теоретические основы, представленные в этом труде, стали фундаментом для дальнейших открытий в области электричества и магнетизма. Получив известность и признание в высокоуважаемых академиях и научных организациях мира, Ампер избегал публичности и чувствовал себя счастливым только в скромной лаборатории в Париже.

Несмотря на достижения и место в обществе, судьба учёного сложилась довольна трагично. В 1793 году его отца гильотинировали за политические убеждения. Это событие стало причиной глубокой депрессии Андре-Мари и едва не свело его с ума. Первая жена рано ушла из жизни после продолжительной болезни, второй брак был неудачным и несчастливым. Сам Ампер умер в 1836 году от воспаления лёгких в Марселе и был похоронен на кладбище Монмартр в Париже.

Электрический ток

Электричеством называют форму энергии, основанной на наличии электрических зарядов в веществе. Вся материя состоит из атомов, а атомы содержат заряженные частицы. Каждый протон в атомном ядре содержит одну единицу положительного электрического заряда, а каждый электрон, вращающийся вокруг ядра, несёт в себе единицу отрицательного. Электрические явления возникают, когда электроны покидают атомы: потеря одного или нескольких из них превращает атом в положительно заряженный ион. Все явления, происходящие с зарядами, могут быть отнесены к двум основным категориям:

  • статическое электричество;
  • электрический ток.

Первый термин описывает поведение зарядов в состоянии покоя. Подобные явления хорошо иллюстрируют наэлектризованные волосы — они будут отталкиваться друг от друга, поскольку обладают одним зарядом.

Электрический ток имеет отношение к поведению зарядов в движении. Чтобы они перемещались непрерывно, им нужно обеспечить беспрепятственный маршрут. Путь для зарядов называют электрической цепью. Простейшая электрическая цепь, как правило, состоит из следующих элементов:

  • источника;
  • нагрузки;
  • соединяющих проводников.

Электрическим током называют любое движение носителей электрических зарядов: субатомных частиц (электронов или протонов), ионов (атомов, потерявших или набравших электроны) или квазичастиц (дырок в полупроводниках, которые можно рассматривать в качестве положительно заряженных носителей).

Ток в проводнике представляет собой движение электронов в одном направлении (постоянный) или с периодической сменой направления движения (переменный). В газах и жидкостях он состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных в обратном. Существуют и другие его виды, например, пучки протонов, позитронов или других заряженных мюонов в ускорителях частиц.

В отношении общепринятого направления тока существует некоторое противоречие, основа которого была заложена более двух веков назад. Поскольку в те времена электроны ещё не были обнаружены, учёные предположили, что перемещаемые частицы несли положительный заряд. Традиция обозначать направление тока как направление движения положительных частиц не забыта и сейчас, хоть в проводниках носителями заряда являются электроны.

Единица и определение

Важнейшей характеристикой для описанных явлений является количественное измерение потока заряженных частиц. Этот показатель называют силой тока, его единица измерения — ампер (обозначается A). В численном выражении 1 ампер равен единичному заряду (1 кулону), проходящему через точку в цепи за единицу времени (1 секунду). Таким образом, A можно рассматривать как скорость потока I=Q/T, имеющую такой же смысл для заряда, как и скорость для физических тел. Широко применяются следующие кратные единицы:

  • 10 −6 А — микроампер мкА;
  • 10 −3 А — миллиампер мА;
  • 10 3 А — килоампер кА.

Эволюция эталона

В знак признания фундаментальных работ великого физика André-Marie Ampère название ампер было принято в качестве электрической единицы измерения на международной конвенции в 1881 году. По международному определению 1883 года 1ампером являлся ток, способный при прохождении раствора нитрата серебра выделить 0,001118000 грамм серебра за секунду. Более поздние замеры показали, что принятый эквивалент составлял 0,99985 A, поэтому способы расписать ампер через явления электролиза со временем перестали удовлетворять из-за растущих требований к точности.

Читайте также:  Подшипник первичного вала ямз 236

С 1948 года A (amper) был определён в Международной системе единиц как неизменяющийся ток, протекающий в двух параллельных проводниках бесконечной длины и ничтожно малого сечения, помещённых на расстоянии одного метра друг от друга в вакууме, и производящий между ними силу взаимодействия, равную 2х10 -7 ньютонов на метр длины. Это определение базируется на явлении электромагнетизма, связывая метр, килограмм и электрические единицы магнитной постоянной (1.25663706х10 -6 м кг с -2 А -2) .

Реализация такого эталона основана на работе сложных электромеханических устройств. Их точность ограничивается десятимиллионными долями, что недостаточно для современных нужд. Эта проблема классического определения ампера привела к новой практической реализации. В соответствии с ней все электрические единицы рассматриваются как производные от электрических квантовых стандартов на основе эффекта Джозефсона и квантового эффекта Холла. Подобная привязка позволяет воспроизводить единицу с точностью до миллиардных долей.

Будущее величины в СИ

В 2005 году Международный комитет мер и весов начал первые приготовления к переопределению единиц СИ с целью привязки их к естественным константам. В соответствии с таким взглядом на эталоны ампер будет определяться подсчётом одиночных частиц с элементарным зарядом e. На основании решения 2014 года пересмотр вступает в силу в 2018 году.

Элегантная реализация нового определения A теоретически возможна с помощью одноэлектронных насосов, производящих электрический ток через синхронизированный контролируемый транспорт одиночных электронов. Некоторые международные исследования в этом направлении уже близки к достижению такой амбициозной цели.

Воздействие на человека

В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18 . То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:

  • 160х10 -19 — один электрон в секунду;
  • 0,7х10 -3 — слуховой аппарат;
  • 5х10 -3 — пучок в кинескопе телевизора;
  • 150х10 -3 — портативный ЖК телевизор;
  • 0,2 — электрический угорь;
  • 0,3 — лампа накаливания;
  • 10 — тостер, чайник;
  • 100 — стартер автомобиля;
  • 30х10 3 — удар молнии;
  • 180х10 3 — дуговая печь для ферросплавов;
  • 5х10 6 — дуга между Юпитером и Ио.

Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:

  1. Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
  2. Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
  3. Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
  4. Продолжительность воздействия.

Большое влияние на тяжесть поражения током оказывает также неспособность отпустить источник. При условии, что пальцы человека держат в руках один из контактов под напряжением, многие взрослые люди не могут отпустить источник при протекающем постоянном токе менее 6 мА. При 22 мА это будет не под силу всем людям. 10 мА для человека, находящегося в воде, достаточно, чтобы вызвать полную потерю контроля над мышцами.

Практические измерения

Подсчёт количества электронов в проводнике с секундомером в руке практически неосуществим, поэтому ток измеряют специальными приборами (амперметрами) или косвенными расчётами. Амперметры устроены таким образом, что они реагируют на магнитное поле, создаваемое измеряемым током. Существуют различные типы подобных измерительных приборов, но все они основаны на одном принципе. Общие правила измерений силы тока можно свести к следующему перечню:

  1. Амперметр всегда включается последовательно к нагрузке, при измерениях ток должен протекать через прибор. Подключение прибора параллельно может привести к протеканию в нём слишком больших токов, что способно вызвать его выход из строя.
  2. Для высокой точности измерений внутреннее сопротивление прибора должно быть настолько низким, насколько это возможно, чтобы не влиять на параметры цепи.
  3. Следует позаботиться о виде тока (AC или DC). В случае с постоянным обязательно обратить внимание на полярность.
  4. Диапазон измерений должен быть настолько большим, насколько это возможно без вреда для точности. Важно, чтобы неизмеряемое значение не оказалась за пределами шкалы.
Читайте также:  Замена моторчика заслонки печки приора

Возможны случаи, когда контур невозможно разомкнуть для замеров или нужное место в цепи труднодоступно. В таких ситуациях измерение можно выполнить косвенно. Определив падение напряжения на резисторе, можно с помощью закона Ома определить ток. Косвенные измерения удобно производить мультиметром — прибором, объединяющим функции омметра, вольтметра и амперметра.

В ситуациях, когда ток слишком высок для того, чтобы измерить его стандартным прибором, используют шунтирование. Самый дешёвый и простой способ — параллельное присоединение к участку резистора с омметром. Применение для измерений трансформатора тока добавляет важное преимущество, заключающееся в создании гальванической развязки между измерительным прибором и схемой, в которой измеряется ток. Но в этом случае анализ возможен только для переменного тока.

Измерения тока на реальных схемах выполняются в большинстве случаев для двух целей. Основная задача замеров — контроль за питанием. Вторая функция анализа токов заключается в определении неисправностей или превышения допустимого ампеража.

Очень важен выбор правильной технологии снятия показаний, чтобы компоненты контрольного оборудования способны были должным образом работать в пиковых и аварийных режимах. Современное развитие цифровой и компьютерной техники значительно расширило возможности точного измерения и исследования токов косвенными методами, а полупроводниковые технологии недалёкого будущего обещают дозировать электричество с точностью до единичного заряда.

Формулировка «единица силы тока» была впервые употреблена французским математиком и физиком А. Ампером при повторении опытов электромагнитного взаимодействия. Впоследствии начиная с 1881 года, когда состоялся Первый Международный конгресс электриков, ампером стали называть единицу силы тока.

Какие характеристики определяют силу тока в 1 ампер

Формальное определение данной единицы – ампер – было введено в 1948 году по предложению МКМВ (Международного комитета мер и весов). Оно гласит, что ампер – это сила постоянного тока, который протекает по беспредельно тонким длинным параллельным проводникам, отстоящим друг от друга на 1 метр и находящимся в вакууме, вызывая взаимодействие между ними силой 2 × 10−7 ньютона на каждый участок длиной 1 метр.

На практике воспроизвести условия определения невозможно, проводники имеют как конечную длину, так и конкретное сечение. Обычно сила взаимодействия определяется между двумя катушками с большим количеством витков провода. Этот принцип до 1992 года лежал в основе определения эталона ампера на токовых весах. При этом измерялась сила или момент сил, действующих на помещенную в магнитное поле катушку с током. Сила электрического тока измеряется амперметром.

С 1992 года эталон ампера в РФ определяется косвенным путем с использованием закона Ома, благодаря чему погрешность значения уменьшилась на два порядка.

Силу электрического тока можно представить как скорость изменения заряда, т. е. 1 ампер – это такая сила тока, когда за каждую секунду через поперечник проводника проходит количество электричества, равное 1 кулону (6,241·10¹⁸ электронов).

Закон Ампера – определение

А. М. Ампер не только дал свое имя единице силы тока, но и установил закон, определяющий силу воздействия однородного магнитного поля на проводник, размещенный в нем. Ее величина прямо пропорционально зависит от длины проводника, силы протекающего по нему тока, вектора магнитной индукции и синуса угла между вектором и направлением тока.

Физик первым установил особенности взаимодействия двух проводников с током. Направленное перемещение электронов – протекание тока в них – обуславливает притяжение проводников (ток течет в едином для обоих направлении) или отталкивание этих проводов при противоположном направлении протекания тока.

Представление о силе тока дают следующие характеристики процессов:

— в канале молнии она равна примерно 500 килоамперам (1 кА = 10³ А);

— во включенной стоваттной электрической лампочке протекает ток силой ≈ 0,5 А;

— примерная сила тока при лечении электрофорезом равняется 0,8 мА (1мА = 0,001A);

— в ТЭНе электрообогревателя проходит ток до 10 А.

В замкнутой цепи в любом ее месте через поперечник проводника ежесекундно проходит одно и то же количество электричества, т. е. сила тока на каждом участке цепи одинакова. Ее величина не зависит от толщины электрического проводника, т. к. заряды не имеют свойства накапливаться в одном месте.

Перспективы единицы силы тока в будущем

Условиями будущей ревизии единиц системы СИ, принятыми XXIV ГКМВ в октябре 2011 года, предусмотрено переопределение некоторых величин, в том числе и ампера. На величину единицы будет влиять вновь определенное значения электрического заряда (e = 1,602 17X·10−19 Кл).

Ампер в будущем также будет определять силу тока, но его величина будет устанавливаться в зависимости от данного числа.

Комментировать
1 149 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock
detector